FIRE RATED PATTERN CEILING DIFFUSER STEEL • SQUARE NECK **MODEL: 6500FRD** ## **Dimensional Data and Sizing Availability:** | Ceiling
Module | Nominal
Duct Size | Open | ed Height C | |-------------------|----------------------|----------|----------------| | CM | (square) | Standard | With AV Option | | 12 x 12 | 6 x 6 | 5 3/4 | 6 1/2 | | | 9 x 9 | 7 1/4 | 8 | | 24 x 24 | 6 x 6 | 5 3/4 | 6 1/2 | | | 9 x 9 | 7 1/4 | 8 | | | 12 x 12 | 9 | 9 3/4 | | 24 1 24 | 15 x 15 | 10 1/4 | 11 | | | 18 x 18 | 11 3/4 | N/A | | | 21 x 21 | 13 1/4 | N/A | Note: If square ceiling module is more than 3" (76) larger than the duct size, a module sized extended panel is utilized. #### ITEMS: - 1. Steel duct drop (by others). - 2. U.L. Listed fusible link. 212°F (100°C) standard. - 3. Ceiling radiation damper (Model 0716). - 4. Ceramic fibre thermal blanket accessory (Model 0726). - 5. Corrosion resistant steel diffuser. #### **DESCRIPTION:** - All models are classified for use in UL/ULC restrained or unrestrained floor/ceiling and or roof/ceiling assemblies which incorporate an exposed grid suspended ceiling (lay-in T-bar) with up to a 3 hour rating. For details of fire rated assemblies, see the current UL or ULC Fire Resistance Directory. - 2. A high capacity ceiling diffuser available in 1, 2, 3 or 4-way blow patterns to provide a tight horizontal air flow pattern from maximum to minimum air flow. Ideal for VAV applications. - 3. Spring-loaded removable core. ## **Core Selection** - The fixed radiation damper is standard. The adjustable ceiling radiation damper (Model 0716A) with volume control for balancing is optional. - 5. Standard finish is AW Appliance White. ## **OPTIONS:** - AV Fusible link adjustable volume control (Model 0716A damper). Max. square duct size is 15 x 15 (381 x 381). - Non-standard temperature U.L. Listed fusible link. □ 165°F (74°C) - 3. Finish: - ☐ WH Off-white ☐ SP Special For installation instructions, see IOM-CRDSDINST or IOM-CRDTBINST. SCHEDULE TYPE: Dimensions are in inches (mm). PROJECT: DATE B SERIES SUPERSEDES DRAWING NO. CONTRACTOR: 11 - 24 - 16 6500FRD 5 - 11 - 15 6500FRD-1 # FIRE RATED PATTERN CEILING DIFFUSER ADJUSTABLE VANES • STEEL • SQUARE NECK MODEL: 6550FRD ## **Dimensional Data and Sizing Availability:** | Ceiling
Module | Nominal
Duct Size | Opening
Height C | | |-------------------|----------------------|---------------------|----------------| | CM | (square) | Standard | With AV Option | | 10 v 10 | 6 x 6 | 5 3/4 | 6 1/2 | | 12 x 12 | 9 x 9 | 7 1/4 | 8 | | | 6 x 6 | 5 3/4 | 6 1/2 | | | 9 x 9 | 7 1/4 | 8 | | 24 y 24 | 12 x 12 | 9 | 9 3/4 | | 24 x 24 | 15 x 15 | 10 1/4 | 11 | | | 18 x 18 | 11 3/4 | N/A | | | 21 x 21 | 13 1/4 | N/A | Note: If square ceiling module is more than 3" (76) larger than the duct size, a module sized extended panel is utilized. ### ITEMS: - 1. Steel duct drop (by others). - 2. U.L. Listed fusible link. 212°F (100°C) standard. - 3. Ceiling radiation damper (Model 0716). - 4. Ceramic fibre thermal blanket accessory (Model 0726). - 5. Corrosion resistant steel diffuser. - 6. Adjustable vane. ## **DESCRIPTION:** - All models are classified for use in UL/ULC restrained or unrestrained floor/ceiling and or roof/ceiling assemblies which incorporate an exposed grid suspended ceiling (lay-in T-bar) with up to a 3 hour rating. For details of fire rated assemblies, see the current UL or ULC Fire Resistance Directory. - 2. A high capacity ceiling diffuser available in a 4-way blow pattern as standard. It provides a tight horizontal air flow pattern from maximum to minimum air flow. Ideal for VAV applications. The unit is provided with independent movable vanes on all four sides to provide a horizontal to vertical throw adjustable discharge. ## **Core Selection** Model 6550FRD is available in core style 4A only. - 3. Spring-loaded removable core. - The fixed radiation damper is standard. The adjustable ceiling radiation damper (Model 0716A) with volume control for balancing is optional. - 5. Standard finish is AW Appliance White. ## **OPTIONS:** - 1. ☐ AV Fusible link adjustable volume control (Model 0716A damper). Maximum square duct size is 15 x 15 (381 x 381). - 2. Non-standard temperature U.L. Listed fusible link. ☐ 165°F (74°C) - 3. Finish: - ☐ WH Off-white ☐ SP Special | SCHEDULE TYPE: | | Dimensions are in inches (mm). | | | |----------------|--------------------------------------|--------------------------------|-------------|-------------| | PROJECT: | Differsions are in filches (fillif). | | | 111). | | ENGINEER: | DATE | B SERIES | SUPERSEDES | DRAWING NO. | | CONTRACTOR: | 11 - 24 - 16 | 6500FRD | 5 - 11 - 15 | 6500FRD-2 | ## FIRE RATED PATTERN CEILING DIFFUSER STEEL • ROUND NECK MODEL: 6505FRD ## **Dimensional Data and Sizing Availability:** | Ceiling
Module | Core /
Back Pan | Round
Neck | Opened
Height | |-------------------|--------------------|----------------|--------------------------| | CM | WxH | D | С | | 12 x 12 | 9 x 9 | 6
8 | 6 1/2
7 1/2 | | | 9 x 9 | 6
8 | 6 1/2
7 1/2 | | | 12 x 12 | 8
10 | 7 1/2
8 1/2 | | 24 x 24 | 15 x 15 | 10
12
14 | 8 1/2
9 1/2
10 1/2 | | | 18 x 18 | 12
14 | 9 1/2
10 1/2 | Note: If square ceiling module is more than 3" (76) larger than the duct size, a module sized extended panel is utilized. #### ITEMS: - 1. Flexible air duct (UL Class 0 or 1) connector or steel duct. - 2. U.L. Listed fusible link. 212°F (100°C) standard. - 3. Ceiling radiation damper (Model 0722). - 4. Ceramic fibre thermal blanket accessory (Model 0725). - 5. Corrosion resistant steel diffuser. ### **DESCRIPTION:** - All models are classified for use in UL/ULC restrained or unrestrained floor/ceiling and or roof/ceiling assemblies which incorporate an exposed grid suspended ceiling (lay-in T-bar) with up to a 3 hour rating. For details of fire rated assemblies, see the current UL or ULC Fire Resistance Directory. - 2. A high capacity ceiling diffuser available in 1, 2, 3 or 4-way blow patterns to provide a tight horizontal air flow pattern from maximum to minimum air flow. Ideal for VAV applications. - 3. Spring-loaded removable core. ## **Core Selection** - The fixed radiation damper is standard. The adjustable ceiling radiation damper (Model 0722A) with volume control for balancing is optional. - 5. Standard finish is AW Appliance White. ## **OPTIONS:** - AV Fusible link adjustable volume control (Model 0722A damper) - Non-standard temperature U.L. Listed fusible link. □ 165°F (74°C) - 3. Finish: - ☐ WH Off-white ☐ SP Special For installation instructions, see IOM-CRDSDINST or IOM-CRDTBINST. SCHEDULE TYPE: Dimensions are in inches (mm). PROJECT: DATE B SERIES SUPERSEDES DRAWING NO. CONTRACTOR: 11 - 24 - 16 6500FRD 5 - 11 - 15 6500FRD-3 # FIRE RATED PATTERN CEILING DIFFUSER ADJUSTABLE VANES • STEEL • ROUND NECK MODEL: 6555FRD ## **Dimensional Data and Sizing Availability:** | Ceiling
Module | Core /
Back Pan | Round
Neck | Opened
Height | |-------------------|--------------------|----------------|--------------------------| | CM | WxH | D | С | | 12 x 12 | 9 x 9 | 6
8 | 6 1/2
7 1/2 | | | 9 x 9 | 6
8 | 6 1/2
7 1/2 | | | 12 x 12 | 8
10 | 7 1/2
8 1/2 | | 24 x 24 | 15 x 15 | 10
12
14 | 8 1/2
9 1/2
10 1/2 | | | 18 x 18 | 12
14 | 9 1/2
10 1/2 | Note: If square ceiling module is more than 3" (76) larger than the duct size, a module sized extended panel is utilized. #### ITEMS: - 1. Flexible air duct (UL Class 0 or 1) connector or steel duct. - 2. U.L. Listed fusible link. 212°F (100°C) standard. - 3. Ceiling radiation damper (Model 0722). - 4. Ceramic fibre thermal blanket accessory (Model 0725). - 5. Corrosion resistant steel diffuser. - 6. Adjustable vane. ## **DESCRIPTION:** - All models are classified for use in UL/ULC restrained or unrestrained floor/ceiling and or roof/ceiling assemblies which incorporate an exposed grid suspended ceiling (lay-in T-bar) with up to a 3 hour rating. For details of fire rated assemblies, see the current UL or ULC Fire Resistance Directory. - 2. A high capacity ceiling diffuser available in a 4-way blow pattern as standard. It provides a tight horizontal air flow pattern from maximum to ## **Core Selection** Model 6555FRD is available in core style 4A only. minimum air flow. Ideal for VAV applications. The unit is provided with independent movable vanes on all four sides to provide a horizontal to vertical throw adjustable discharge. - 3. Spring-loaded removable core. - The fixed radiation damper is standard. The adjustable ceiling radiation damper (Model 0722A) with volume control for balancing is optional. - 5. Standard finish is AW Appliance White. #### **OPTIONS:** - AV Fusible link adjustable volume control (Model 0722A damper) - Non-std. temperature U.L. Listed fusible link. □ 165°F (74°C) - 3. Finish: - ☐ WH Off-white ☐ SP Special | SCHEDULE TYPE: | | Dimensions are in inches (mm). | | | |----------------|-----------------------------------|--------------------------------|-------------|-------------| | PROJECT: | - Dimensions are in inches (min). | | | 111). | | ENGINEER: | DATE | B SERIES | SUPERSEDES | DRAWING NO. | | CONTRACTOR: | 11 - 24 - 16 | 6500FRD | 5 - 11 - 15 | 6500FRD-4 | ## FIRE RATED PATTERN CEILING DIFFUSER STEEL • SQUARE NECK • INDUCTION VANES **MODEL: 6500IVFRD** ## **Dimensional Data and Sizing Availability:** | Ceiling
Module | Nominal
Duct Size | Open | ed Height C | |-------------------|----------------------|----------|----------------| | CM | (square) | Standard | With AV Option | | 12 x 12 | 6 x 6 | 5 3/4 | 6 1/2 | | | 9 x 9 | 7 1/4 | 8 | | 24 x 24 | 6 x 6 | 5 3/4 | 6 1/2 | | | 9 x 9 | 7 1/4 | 8 | | | 12 x 12 | 9 | 9 3/4 | | 24 X 24 | 15 x 15 | 10 1/4 | 11 | | | 18 x 18 | 11 3/4 | N/A | | | 21 x 21 | 13 1/4 | N/A | Note: If square ceiling module is more than 3" (76) larger than the duct size, a module sized extended panel is utilized. #### ITEMS: - 1. Steel duct drop (by others).
- 2. U.L. Listed fusible link. 212°F (100°C) standard. - 3. Ceiling radiation damper (Model 0716). - 4. Ceramic fibre thermal blanket accessory (Model 0726). - 5. Corrosion resistant steel diffuser. ## **DESCRIPTION:** - All models are classified for use in UL/ULC restrained or unrestrained floor/ceiling and or roof/ceiling assemblies which incorporate an exposed grid suspended ceiling (lay-in T-bar) with up to a 3 hour rating. For details of fire rated assemblies, see the current UL or ULC Fire Resistance Directory. - 2. A high capacity ceiling diffuser available in 1, 2, 3 or 4-way blow patterns to provide a tight horizontal air flow pattern from maximum to minimum air flow. Induction vanes cause air to emerge from each louver at alternating angles, producing high induction rates and rapid temperature equalization. Ideal for VAV applications. ## **Core Selection** - 3. Spring-loaded removable core. - The fixed radiation damper is standard. The adjustable ceiling radiation damper (Model 0716A) w/volume control for balancing is optional. - 5. Standard finish is AW Appliance White. ### **OPTIONS:** - AV Fusible link adjustable volume control (Model 0716A damper). Max. square duct size is 15 x 15 (381 x 381). - Non-standard temperature U.L. Listed fusible link. □ 165°F (74°C) - 3. Finish: - ☐ WH Off-white ☐ SP Special | SCHEDULE TYPE: | Dimensions are in inches (mm). | | ım) | | |----------------|-----------------------------------|----------|-------------|-------------| | PROJECT: | - Dimensions are in inches (min). | | | | | ENGINEER: | DATE | B SERIES | SUPERSEDES | DRAWING NO. | | CONTRACTOR: | 11 - 24 - 16 | 6500FRD | 5 - 11 - 15 | 6500FRD-5 | # FIRE RATED PATTERN CEILING DIFFUSER STEEL • ROUND NECK • INDUCTION VANES MODEL: 6505IVFRD ## **Dimensional Data and Sizing Availability:** | Ceiling
Module | Core /
Back Pan | Round
Neck | Opened
Height | |-------------------|--------------------|----------------|--------------------------| | CM | WxH | D | С | | 12 x 12 | 9 x 9 | 6
8 | 6 1/2
7 1/2 | | | 9 x 9 | 6
8 | 6 1/2
7 1/2 | | | 12 x 12 | 8
10 | 7 1/2
8 1/2 | | 24 x 24 | 15 x 15 | 10
12
14 | 8 1/2
9 1/2
10 1/2 | | | 18 x 18 | 12
14 | 9 1/2
10 1/2 | Note: If square ceiling module is more than 3" (76) larger than the duct size, a module sized extended panel is utilized. #### ITEMS: - 1. Flexible air duct (UL Class 0 or 1) connector or steel duct. - 2. U.L. Listed fusible link. 212°F (100°C) standard. - 3. Ceiling radiation damper (Model 0722). - 4. Ceramic fibre thermal blanket accessory (Model 0725). - 5. Corrosion resistant steel diffuser. ### **DESCRIPTION:** - All models are classified for use in UL/ULC restrained or unrestrained floor/ceiling and or roof/ceiling assemblies which incorporate an exposed grid suspended ceiling (lay-in T-bar) with up to a 3 hour rating. For details of fire rated assemblies, see the current UL or ULC Fire Resistance Directory. - 2. A high capacity ceiling diffuser available in 1, 2, 3 or 4-way blow patterns to provide a tight horizontal air flow pattern from maximum to minimum air flow. Induction vanes cause air to emerge from each louver at alternating angles, producing high induction rates and rapid temperature equalization. Ideal for VAV applications. ## **Core Selection** - 3. Spring-loaded removable core. - The fixed radiation damper is standard. The adjustable ceiling radiation damper (Model 0722A) with volume control for balancing is optional. - 5. Standard finish is AW Appliance White. ### **OPTIONS:** - AV Fusible link adjustable volume control (Model 0722A damper) - Non-standard temperature U.L. Listed fusible link. □ 165°F (74°C) - 3. Finish: □ SP Special. Specify _____ | SCHEDULE TYPE: | | Dimensions are in inches (mm). | | | |----------------|-----------------------------------|--------------------------------|-------------|-------------| | PROJECT: | - Dimensions are in inches (min). | | | 111). | | ENGINEER: | DATE | B SERIES | SUPERSEDES | DRAWING NO. | | CONTRACTOR: | 11 - 24 - 16 | 6500FRD | 5 - 11 - 15 | 6500FRD-6 | ## STANDARD AND OPTIONAL FINISHES FOR GRILLES AND DIFFUSERS Nailor offers a selection of standard colors and finishes available on our grilles, registers and diffusers. For painted finishes, our state-of-the-art paint systems provide environmentally friendly finishing solutions with uniform coverage and coating thickness. The result is an exceptionally durable finish that resists scratching, corrosion and general wear. Additional facilities for special requirements, as well as a selection of anodized or brushed finishes, complete our ability to provide unmatched beauty and durability for any application. ## NAILOR POWDER COAT PROPERTIES | FILM THICKNESS | 2.0 to 3.0 mils | |----------------------|--| | HARDNESS | 2 H | | IMPACT
RESISTANCE | Direct: 160 inch - lbs.
Reverse 160 inch - lbs. | | SALT SPRAY | 1000 hours | ## **ELECTROCOATING PROPERTIES** | FILM THICKNESS | .8 to 1.2 mils | |----------------------|----------------| | HARDNESS | НВ ТО Н | | IMPACT
RESISTANCE | 80 inch - lbs | | SALT SPRAY | 100 hours | ## **POWDER COAT** Nailor's powder coat is a high-tech thermosetting polyester powder coating with superior physical properties that provide excellent color and gloss retention. The finish offers extreme durability and hardness that resists scratching, chipping and general wear. Surface preparation includes degreasing and a chemical cleaning followed by a clean rinse before a final powder coat finish is applied and baked. The environmentally friendly Nailor powder coat system assures uniform coverage and color consistency resulting in a long lasting superior finish. Colors, including simulated anodizing, which is far more economical than color anodizing, can be selected from Nailor's standard color chart or non-standard colors and can be matched from sample chips provided to Nailor. ## **ELECTROCOATING** E-Coat is an environmentally friendly coating that provides complete coverage and a wide range of performance properties, formulated to meet corrosion, durability and other performance specifications. Electrocoating is a highly automated process in which paint is electrically deposited onto a metal foundation. Film build thickness is uniform and overall application efficiencies are in excess of 90%. Paint is consistent on all part-to-part surfaces, preventing sags, runs or drips. E-Coat offers flexibility, better first yield pass and quicker production times compared to other forms of paint applications. Electrocoating is an excellent solution that offers superior properties and uniform finish. ## **CLEAR ANODIZING** (Aluminum products only) Clear anodizing is a clear oxide coating that exemplifies an aluminum surface's natural oxide coating producing a hard, scratch resistant surface that is resistant to general wear and mild chemicals. The process provides a natural looking, virtually maintenance free finish that will endure for many years. ## **COLOR ANODIZING** (Aluminum products only) Color anodizing is an electrolytic process where, after standard anodizing procedures, colored metallic pigments penetrate the oxide surface pores producing a corrosion resistant, colorfast finish. The process results in a natural metallic appearance that requires little maintenance. #### **BRUSHED AND CLEAR COAT** Available on specific aluminum products (consult applicable product page for availability). Surface is brushed to achieve a scratch finish texture before being degreased and chemically cleaned. A clear lacquer coating is then applied to provide a durable protective finish. ## #4 BRUSHED SATIN POLISHED (Stainless Steel products only) Surface is polished to ASTM A480 #4 standard to achieve a bright durable finish that is resistant to mild chemicals and corrosion. A final coating is not required due to the inherent anti-corrosion properties of the stainless steel. ## **PRIME COAT** Prime coat provides a stable base for painting in the field. Surface pretreatment includes degreasing and a chemical cleaning before an alkyd prime coat is applied. After a thorough cleaning for dust, etc. that can contaminate the final finish and cause premature flaking or peeling, finish coat should be field applied as soon as possible. ## PAINT PREPARED ALUMINUM (Aluminum products only) Allows for field applied paint. Surface preparation includes degreasing and a chemical cleaning followed by a clean rinse. Finish coat should be field applied as soon as possible. ## **MILL FINISH** Surface is left untreated and requires cleaning, degreasing, etc. in the field before final finish can be applied if required. ## STANDARD AND OPTIONAL FINISHES FOR GRILLES AND DIFFUSERS The following standard colors and finishes are available on applicable Nailor air distribution products. Consult individual product pages for availability The pictured finishes have been represented as best as possible within printing limitations. However, actual finish may vary. Contact your Nailor representative for a color chip sample on the material specified for a more accurate representation. **DBK** - Black (for registers ordered with factory mounted dampers) - **BA** - Perforated Diffusers (4300 series only) Appliance White (AW) face with black back pan and pattern controllers. ## **MODELS 6500IV AND 6200IV • SQUARE NECK • INDUCTION VANES** | NOMINAL
NECK
SIZE | BLOW
Patterns | | NECK
Velocity
TP | 300
.035 | 400
.062 | 500
.097 | 600
.140 | 700
.191 | 800
.249 | 900
.316 | |-------------------------|-------------------|----------------------|------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | | RETURN
FACTORS | —SP=1.1 TP
NC + 1 | CFM
NC | 75
— |
100
14 | 125
21 | 150
26 | 175
30 | 200
35 | 225
39 | | | 171010110 | 11011 | 110 | A B | A B | A B | A B | A B | A B | A B | | 6 | | (A) 4A | CFM/SIDE
THROW, FT. | 19
3-4-6 | 25
3-5-8 | 31
5-6-8 | 37
5-6-9 | 44
6-7-10 | 50
6-7-10 | 56
7-8-10 | | х
6 | | A 3A | CFM/SIDE
THROW, FT. | 19 28
3-4-6 4-6-9 | 25 38
3-5-8 5-7-10 | 31 47
5-6-8 6-8-11 | 37 56
5-6-9 6-9-12 | 44 66
6-7-10 7-10-13 | 50 75
6-7-10 7-10-14 | 56 85
7-8-10 8-10-14 | | .25 | 2S | 2G | CFM/SIDE
THROW, FT. | 37
6-7-10 | 50
7-8-11 | 62
8-9-13 | 75
9-10-14 | 88
10-10-14 | 100
10-10-15 | 113
10-11-16 | | SQ. FT. | |) A 1S | CFM/SIDE
THROW, FT. | 75
7-9-12 | 100
8-10-14 | 125
9-11-15 | 150
10-12-18 | 175
10-13-18 | 200
11-14-19 | 225
12-14-20 | | | RETURN
FACTORS | —SP=1.2 TP
NC + 2 | CFM
NC | 170 | 225
18 | 280
24 | 340
30 | 395
35 | 450
39 | 505
42 | | | TAUTUIO | NO T Z | NO | A B | A B | A B | A B | A B | A B | A B | | 9 | | (A) 4A | CFM/SIDE
THROW, FT. | 42
5-6-10 | 56
6-8-11 | 70
8-9-12 | 84
8-10-13 | 98
9-10-14 | 112
9-11-15 | 126
10-12-16 | | х
9 | | A 3A | CFM/SIDE
THROW, FT. | 42 63
5-6-10 7-9-11 | 56 85
6-8-11 8-10-14 | 70 106
8-9-12 9-10-15 | 84 127
8-10-13 10-11-16 | 98 148
9-10-14 10-12-17 | 112 169
9-11-15 10-13-18 | 126 190
10-12-16 11-14-19 | | .56 | 2S | 2G | CFM/SIDE
THROW, FT. | 84
7-8-12 | 112
9-10-14 | 141
10-12-16 | 169
10-13-18 | 197
11-14-18 | 225
12-14-20 | 253
13-15-22 | | SQ. FT. | | ∭) A 1S | CFM/SIDE
THROW, FT. | 169
10-12-16 | 225
11-14-18 | 282
13-15-21 | 338
14-18-23 | 394
14-18-25 | 450
15-19-26 | 507
18-20-28 | | | RETURN
FACTORS | —SP=1.3 TP
NC + 4 | CFM
NC | 300
14 | 400
21 | 500
27 | 600
32 | 700
37 | 800
40 | 900
43 | | | | | | A B | A B | A B | A B | A B | A B | A B | | 12 | | (a) 4A | CFM/SIDE
THROW, FT. | 75
6-10-12 | 100
9-11-14 | 125
10-12-17 | 150
11-14-18 | 175
11-14-19 | 200
12-16-20 | 225
14-17-22 | | 12 | | ₽ _A 3A | CFM/SIDE
THROW, FT. | 75 112
6-10-12 9-11-15 | 100 150
9-11-14 11-13-17 | 125 187
10-12-17 11-14-19 | 150 225
11-14-18 12-15-21 | 175 262
11-14-19 13-16-22 | 200 300
12-16-20 14-17-24 | 225 338
14-17-22 15-18-25 | | 1.0 | 2S | 2G | CFM/SIDE
THROW, FT. | 150
10-12-16 | 200
12-14-20 | 250
14-15-22 | 300
14-16-23 | 350
15-17-25 | 400
16-20-27 | 450
17-20-29 | | SQ. FT. | |) A 1S | CFM/SIDE
THROW, FT. | 300
13-16-22 | 400
14-18-26 | 500
17-20-30 | 600
18-21-31 | 700
18-22-33 | 800
20-23-33 | 900
22-26-38 | | | RETURN
FACTORS | —SP=1.8 TP
NC + 4 | CFM
NC | 465
14 | 625
23 | 780
29 | 935
34 | 1090
37 | 1250
43 | 1400
45 | | | | • | | A B | A B | A B | A B | A B | A B | A B | | 15 | | (a) 4A | CFM/SIDE
THROW, FT. | 117
10-13-17 | 156
11-14-19 | 195
13-15-22 | 234
14-17-23 | 273
15-18-24 | 312
16-19-26 | 350
17-21-28 | | 15 | | ₽ _A 3A | CFM/SIDE
THROW, FT. | 117 175
10-13-17 11-14-18 | 156 234
11-14-19 14-18-23 | 195 292
13-15-22 15-18-25 | 234 351
14-17-23 17-18-27 | 273 409
15-18-24 18-20-29 | 312 468
16-19-26 18-23-31 | 350 527
17-21-28 20-23-34 | | 1.56 | 2S | 2G | CFM/SIDE
THROW, FT. | 234
13-16-22 | 312
15-18-25 | 390
17-20-29 | 468
18-22-32 | 546
19-23-34 | 625
22-25-36 | 700
22-28-38 | | SQ. FT. | |) A 1S | CFM/SIDE
THROW, FT. | 467
17-20-29 | 625
18-23-34 | 780
21-26-38 | 935
23-29-41 | 1090
24-31-44 | 1250
26-34-46 | 1400
29-35-49 | | | RETURN
Factors | —SP=2.1 TP
NC + 6 | CFM
NC | 675
16 | 900
25 | 1125
31 | 1350
35 | 1575
40 | 1800
43 | 2025
46 | | | | • | | A B | A B | A B | A B | A B | A B | A B | | 18 | | (♣ 4A | CFM/SIDE
THROW, FT. | 168
12-15-20 | 225
14-16-23 | 281
15-19-26 | 337
16-20-29 | 394
18-22-30 | 450
19-23-33 | 506
20-25-34 | | 18 | | ₽ _A 3A | CFM/SIDE
THROW, FT. | 168 253
12-15-20 14-18-23 | 225 338
14-16-23 16-20-26 | 281 422
15-19-26 18-22-30 | 337 506
16-20-29 20-26-34 | 394 590
18-22-30 21-26-36 | 450 675
19-23-33 22-28-38 | 506 760
20-25-34 26-29-41 | | 2.25 | 2S | 2G | CFM/SIDE
THROW, FT. | 337
15-18-26 | 450
18-21-30 | 562
19-24-34 | 675
21-25-37 | 787
24-27-39 | 900
24-28-42 | 1012
26-31-44 | | SQ. FT. | |) A 1S | CFM/SIDE
THROW, FT. | 675
20-26-36 | 900
24-29-41 | 1125
27-34-46 | 1350
29-36-49 | 1575
31-38-53 | 1800
34-42-56 | 2025
37-44-60 | For performance notes, see D44. ## **MODELS 6500IV AND 6200IV • SQUARE NECK • INDUCTION VANES** | NOMINAL
NECK
Size | BLOW
Patterns | | NECK
VELOCITY
TP | 300
.035 | 400
.062 | 500
.097 | 600
.140 | 700
.191 | 800
.249 | 900
.316 | |-------------------------|-------------------|--------------------------|------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | | RETURN
FACTORS | —SP=2.6 TP
NC + 8 | CFM
NC | 915
18 | 1225
26 | 1530
32 | 1835
36 | 2140
41 | 2450
44 | 2750
47 | | | | | | A B | A B | A B | A B | A B | A B | A B | | 21 | | (□) 4A | CFM/SIDE
THROW, FT. | 230
14-17-24 | 306
15-20-27 | 382
17-22-31 | 460
18-24-33 | 535
20-27-35 | 612
21-27-37 | 688
22-31-41 | | 21 | | ₽ _A 3A | CFM/SIDE
THROW, FT. | 230 345
12-15-21 16-20-27 | 306 460
14-18-23 18-22-31 | 382 573
15-20-27 21-25-36 | 460 688
16-21-29 22-27-40 | 535 802
18-22-31 23-29-42 | 612 918
18-23-32 27-31-45 | 688 1030
20-27-36 27-34-47 | | 3.06 | 2S | 2G | CFM/SIDE
THROW, FT. | 458
18-22-31 | 612
20-25-36 | 765
22-28-40 | 917
25-31-44 | 1070
27-34-47 | 1225
27-36-50 | 1375
31-38-48 | | SQ. FT. | |) A 1S | CFM/SIDE
THROW, FT. | 917
23-30-41 | 1225
27-34-47 | 1530
31-40-54 | 1835
34-42-57 | 2140
37-45-62 | 2450
40-48-66 | 2750
42-51-70 | | | RETURN
FACTORS | —SP=2.7 TP
NC + 8 | CFM
NC | 1200
19 | 1600
27 | 2000
33 | 2400
37 | 2800
41 | 3200
45 | 3600
48 | | | | | | A B | A B | A B | A B | A B | A B | A B | | 24 | | (□) ^{4A} | CFM/SIDE
THROW, FT. | 300
16-19-26 | 400
19-22-32 | 500
22-25-35 | 600
23-26-38 | 700
25-28-41 | 800
26-32-44 | 900
28-32-46 | | 24 | | ₽ _A 3A | CFM/SIDE
THROW, FT. | 300 450
16-19-26 18-22-31 | 400 600
19-22-32 19-25-37 | 500 750
22-25-35 23-29-42 | 600 900
23-26-38 25-30-45 | 700 1050
25-28-41 29-33-47 | 800 1200
26-32-44 29-34-51 | 900 1350
28-32-46 31-38-54 | | 4.0 | 2S | 2G | CFM/SIDE
THROW, FT. | 600
20-26-36 | 800
24-29-41 | 1000
27-34-46 | 1200
29-36-49 | 1400
31-38-53 | 1600
34-42-56 | 1800
37-44-60 | | SQ. FT. | | IIII) A 1S | CFM/SIDE
THROW, FT. | 1200
28-32-47 | 1600
30-38-54 | 2000
36-43-62 | 2400
38-46-66 | 2800
41-50-72 | 3200
43-54-74 | 3600
47-56-81 | | | RETURN
FACTORS | —SP=3.1 TP
NC + 8 | CFM
NC | 1875
20 | 2500
28 | 3125
34 | 3750
39 | 4375
43 | 5000
46 | 5625
50 | | | | | | A B | A B | A B | A B | A B | A B | A B | | 30 | | (a) 4A | CFM/SIDE
THROW, FT. | 469
20-25-34 | 625
23-29-38 | 782
27-32-44 | 937
29-35-49 | 1093
30-37-52 | 1250
32-40-55 | 1406
37-42-58 | | 30 | | ₽ _A 3A | CFM/SIDE
THROW, FT. | 469 703
20-25-34 22-27-39 | 625 938
23-29-38 26-31-46 | 782 1172
27-32-44 28-35-51 | 937 1405
29-35-49 31-39-55 | 1093 1640
30-37-52 33-39-59 | 1250 1875
32-40-55 35-46-62 | 1406 2110
37-42-58 39-48-66 | | 6.25 | 2S | 2G | CFM/SIDE
THROW, FT. | 937
26-32-44 | 1250
30-38-50 | 1562
34-42-58 | 1875
38-46-62 | 2187
40-48-66 | 2500
42-52-70 | 2812
46-54-76 | | SQ. FT. | |) A 1S | CFM/SIDE
THROW, FT. | 1875
34-42-58 | 2500
39-48-66 | 3125
45-55-74 | 3750
48-58-82 | 4375
50-62-87 | 5000
55-66-117 | 5625
58-70-98 | | | RETURN
FACTORS | SP=3.6 TP
NC + 9 | CFM
NC | 2700
22 | 3600
29 | 4500
35 | 5400
40 | 6300
44 | 7200
48 | 8100
52 | | | | | | A B | A B | A B | A B | A B | A B | A B | | 36 | | (□) 4A | CFM/SIDE
THROW, FT. | 675
24-30-41 | 900
27-33-46 | 1125
31-37-54 | 1350
33-41-59 | 1575
35-42-62 | 1800
41-46-66 | 2025
41-51-70 | | 36 | | ₽ _A 3A | CFM/SIDE
THROW, FT. | 675 1010
24-30-41 27-35-46 | 900 1350
27-33-46 32-38-54 | 1125 1687
31-37-54 37-45-62 | 1350 2025
33-41-59 38-48-66 | 1575 2362
35-42-62 42-51-70 | 1800 2700
41-46-66 46-56-75 | 2025 3038
41-51-70 50-59-80 | | 9.0 | 2S | 2G | CFM/SIDE
THROW, FT. | 1350
32-36-54 | 1800
34-43-61 | 2250
40-49-69 | 2700
43-52-74 | 3150
46-56-81 | 3600
49-61-83 | 4050
54-63-90 | | SQ. FT. | |) A 1S | CFM/SIDE
THROW, FT. | 2700
39-49-68 | 3600
47-56-79 | 4500
53-64-91 | 5400
58-68-98 | 6300
61-73-105 | 7200
66-78-114 | 8100
70-85-120 | **CFM** - cubic feet per minute **Neck Velocity** - feet per minute TP - total pressure - inches w.g. NC Noise Criteria (values) based on 10 dB room absorption, re 10⁻¹² watts. ## **Performance Notes:** - 1. Throw values are given for terminal velocities of 150, 100 and 50 fpm under isothermal conditions. Data applies to ceiling mounted units when the maximum coanda effect applies. When no ceiling is present (exposed duct), throws are reduced by approximately 25%. - 2. Sound levels in performance tables are for steel construction **Model 6500IV**. Apply the following corrections for aluminum construction **Model 6200IV**. TP = Listed value x 1.25. NC = Listed value + 4. -
3. Performance data as tabulated is for supply air conditions. Correction factors for return air application see next page. - 4. Correction factors for round inlets see next page. - 5. Data derived from tests conducted in accordance with ANSI/ASHRAE Standard 70 2006. D ## **PERFORMANCE DATA CORRECTIONS:** ## **MODEL SERIES 6500IV AND 6200IV** ## **CORRECTION FACTORS FOR RETURN INLET** If the unit is used as a return inlet, the performance data is obtained by applying the return corrections, as follows: - Add the NC correction at the left side of the table to the NC value listed in the performance table. - Multiply the listed SP factor at the left side of the table by the total pressure (TP) listed at the top of the table. ## Example: 12" x 12" unit handling 600 cfm of return air. (Page D43). - Return NC = 32 + 4 = 36. - Return negative SP = $1.3 \times (-.14) = -.182$. ## CORRECTION FACTORS WITH SQUARE TO ROUND INLET ADAPTOR - Add the NC correction factor from Table 2 and the NC value listed in the performance tables. - Multiply the correction factor from Table 2 by the listed total pressure in the performance tables. - Multiply the correction factor from Table 2 by the listed throws in the performance tables. ## **Example:** 12" x 12" unit with 10" round adaptor handling 500 cfm supply air. (Page D43). - NC = 27 + 7 = 34 - Total Pressure = .097 x 1.65 = 0.160 - Throw = $17 \times 1.15 = 19.55$ feet @ 50 fpm terminal velocity. **TABLE 2 Correction Factors for SR Adaptors** | SQUARE | ROUND | NC | TP | THROW (multiply) | | | | | | |---------|-------|-------|------------|------------------|------|------|--|--|--| | INLET | INLET | (add) | (multiply) | 150 | 100 | 50 | | | | | 6 x 6 | 5 | 7 | 1.65 | 1.10 | 1.10 | 1.15 | | | | | 9 x 9 | 6 | 17 | 3.50 | 1.15 | 1.15 | 1.20 | | | | | 9 x 9 | 8 | 4 | 1.40 | 1.10 | 1.10 | 1.10 | | | | | 12 x 12 | 8 | 17 | 3.50 | 1.15 | 1.15 | 1.20 | | | | | 12 x 12 | 10 | 7 | 1.65 | 1.10 | 1.10 | 1.15 | | | | | 15 x 15 | 10 | 17 | 3.50 | 1.15 | 1.15 | 1.20 | | | | | 15 x 15 | 12 | 9 | 1.90 | 1.10 | 1.10 | 1.15 | | | | | 15 x 15 | 14 | 3 | 1.25 | 1.05 | 1.05 | 1.10 | | | | | 18 x 18 | 12 | 17 | 3.50 | 1.15 | 1.15 | 1.20 | | | | | 18 x 18 | 14 | 10 | 2.00 | 1.10 | 1.10 | 1.15 | | | | | 18 x 18 | 16 | 5 | 1.45 | 1.10 | 1.10 | 1.10 | | | | | 21 x 21 | 14 | 17 | 3.70 | 1.15 | 1.15 | 1.20 | | | | | 21 x 21 | 16 | 11 | 2.25 | 1.10 | 1.10 | 1.15 | | | | | 21 x 21 | 18 | 6 | 1.60 | 1.10 | 1.10 | 1.10 | | | | | 21 x 21 | 20 | 3 | 1.20 | 1.05 | 1.05 | 1.10 | | | | | 24 x 24 | 16 | 17 | 3.50 | 1.15 | 1.15 | 1.20 | | | | | 24 x 24 | 18 | 12 | 2.35 | 1.10 | 1.10 | 1.15 | | | | | 24 x 24 | 20 | 7 | 1.65 | 1.10 | 1.10 | 1.15 | | | | | 24 x 24 | 22 | 4 | 1.33 | 1.05 | 1.05 | 1.10 | | | | ## **MODELS 6500 AND 6200 • SQUARE NECK** | NOMINAL
NECK
Size | | OW
Erns | NECK
Velocity
Tp | 300
.033 | 400
.058 | 500
.090 | 600
.130 | 700
.177 | 800
.231 | 900
.293 | |-------------------------|-------------------|--------------------------|------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | | RETURN
FACTORS | —SP=1.1 TP
NC + 1 | CFM
NC | 75
— | 100
10 | 125
17 | 150
22 | 175
26 | 200
31 | 225
35 | | | | | | A B | A B | A B | A B | A B | A B | A B | | 6 | | (□) 4A | CFM/SIDE
THROW, FT. | 19
4-5-8 | 25
4-6-10 | 31
6-8-10 | 37
6-8-11 | 44
8-9-12 | 50
8-9-12 | 56
9-10-13 | | 6 | | ₽ A 3A | CFM/SIDE
THROW, FT. | 19 28
4-5-8 5-8-11 | 25 38
4-6-10 6-9-12 | 31 47
6-8-10 8-10-14 | 37 56
6-8-11 8-11-15 | 44 66
8-9-12 9-12-16 | 50 75
8-9-12 9-12-17 | 56 85
9-10-13 10-13-18 | | .25 | 2S | 2G | CFM/SIDE
THROW, FT. | 37
8-9-12 | 50
9-10-14 | 62
10-11-16 | 75
11-12-17 | 88
12-13-18 | 100
12-13-19 | 113
12-14-20 | | SQ. FT. | | ∭) A 1S | CFM/SIDE
THROW, FT. | 75
9-11-15 | 100
10-12-17 | 125
11-14-19 | 150
12-15-22 | 175
13-16-22 | 200
14-17-24 | 225
15-18-25 | | | RETURN
FACTORS | —SP=1.2 TP
NC + 2 | CFM
NC | 170 | 225
14 | 280
20 | 340
26 | 395
31 | 450
35 | 505
38 | | | | | | A B | A B | A B | A B | A B | A B | A B | | 9 | | (□) ^{4A} | CFM/SIDE
THROW, FT. | 42
6-8-12 | 56
7-10-14 | 70
10-11-15 | 84
10-12-16 | 98
11-12-17 | 112
11-14-19 | 126
12-15-20 | | 9 x | | A 3A | CFM/SIDE
THROW, FT. | 42 63
6-8-12 9-11-14 | 56 85
7-10-14 10-12-17 | 70 106
10-11-15 11-13-19 | 84 127
10-12-16 12-14-20 | 98 148
11-12-17 13-15-21 | 112 169
11-14-19 13-16-22 | 126 190
12-15-20 14-18-24 | | .56 | 2S | 2G | CFM/SIDE
THROW, FT. | 84
9-10-15 | 112
11-13-18 | 141
12-15-20 | 169
13-16-22 | 197
14-17-23 | 225
15-18-25 | 253
16-19-28 | | SQ. FT. | | ∭) A 1S | CFM/SIDE
THROW, FT. | 169
12-15-20 | 225
14-17-23 | 282
16-19-26 | 338
17-22-29 | 394
18-22-31 | 450
19-24-33 | 507
22-25-35 | | | RETURN
FACTORS | —SP=1.3 TP
NC + 4 | CFM
NC | 300
10 | 400
17 | 500
23 | 600
28 | 700
33 | 800
36 | 900
39 | | - | | • | | A B | A B | A B | A B | A B | A B | A B | | 12 | | 4A | CFM/SIDE
THROW, FT. | 75
8-13-15 | 100
11-14-18 | 125
13-15-21 | 150
14-17-22 | 175
14-18-24 | 200
15-20-25 | 225
17-21-27 | | 12 | | ₽ _A 3A | CFM/SIDE
THROW, FT. | 75 112
8-13-15 11-14-19 | 100 150
11-14-18 12-15-21 | 125 187
13-15-21 14-17-24 | 150 225
14-17-22 15-19-26 | 175 262
14-18-24 16-20-27 | 200 300
15-20-25 17-21-30 | 225 338
17-21-27 19-22-31 | | 1.0 | 2S | 2G | CFM/SIDE
THROW, FT. | 150
12-15-20 | 200
15-17-25 | 250
17-19-27 | 300
18-20-29 | 350
19-21-31 | 400
20-25-34 | 450
21-25-36 | | SQ. FT. | | ∭) A 1S | CFM/SIDE
THROW, FT. | 300
16-20-28 | 400
18-22-32 | 500
21-25-37 | 600
22-26-39 | 700
23-28-41 | 800
25-29-41 | 900
28-33-47 | | | RETURN
FACTORS | —SP=1.8 TP
NC + 4 | CFM
NC | 465
10 | 625
19 | 780
25 | 935
30 | 1090
33 | 1250
39 | 1400
41 | | - | | A | | A B | A B | A B | A B | A B | A B | A B | | 15 | | (<u>□</u>) 4A | CFM/SIDE
THROW, FT. | 117
13-16-21 | 156
14-18-24 | 195
16-19-27 | 234
18-21-29 | 273
19-22-30 | 312
20-24-33 | 350
21-26-35 | | 15 | | ₽ _B 3A | CFM/SIDE
THROW, FT. | 117 175
13-16-21 14-17-23 | 156 234
14-18-24 17-19-29 | 195 292
16-19-27 19-22-31 | 234 351
18-21-29 21-23-34 | 273 409
19-22-30 22-25-36 | 312 468
19-24-35 22-29-39 | 350 527
21-26-35 25-29-42 | | 1.56 | 2S | 2G | CFM/SIDE
THROW, FT. | 234
16-20-27 | 312
19-22-31 | 390
21-25-36 | 468
22-27-40 | 546
24-29-42 | 625
27-31-45 | 700
27-35-47 | | SQ. FT. | | ∭) A 1S | CFM/SIDE
THROW, FT. | 467
21-25-36 | 625
23-29-42 | 780
26-32-47 | 935
29-36-51 | 1090
30-39-55 | 1250
32-42-57 | 1400
36-44-61 | | | RETURN
Factors | —SP=2.1 TP
NC + 6 | CFM
NC | 675
12 | 900
21 | 1125
27 | 1350
31 | 1575
36 | 1800
39 | 2025
42 | | | | <u> </u> | | A B | A B | A B | A B | A B | A B | A B | | 18 | | 4A | CFM/SIDE
THROW, FT. | 168
15-19-25 | 225
17-20-29 | 281
19-24-32 | 337
20-25-36 | 394
22-27-37 | 450
24-29-41 | 506
25-31-43 | | 18 | | ₽ _A 3A | CFM/SIDE
THROW, FT. | 168 253
15-19-25 17-22-29 | 225 338
17-20-29 20-25-33 | 281 422
19-24-32 23-27-38 | 337 506
20-25-36 25-32-42 | 394 590
22-27-37 26-32-45 | 450 675
24-29-41 27-35-48 | 506 760
25-31-43 32-36-51 | | 2.25 | 2S | 2G | CFM/SIDE
THROW, FT. | 337
19-23-32 | 450
22-26-38 | 562
24-30-43 | 675
26-31-46 | 787
30-34-49 | 900
30-35-53 | 1012
32-39-55 | | SQ. FT. | |) A 1S | CFM/SIDE
THROW, FT. | 675
25-33-45 | 900
30-36-51 | 1125
34-42-58 | 1350
36-45-61 | 1575
39-48-66 | 1800
43-52-70 | 2025
46-55-75 | For performance notes, see page D37. ## **MODELS 6500 AND 6200 • SQUARE NECK** | NOMINAL
NECK
Size | BLO
Patte | | NECK
VELOCITY
TP | 300
.033 | 400
.058 | 500
.090 | 600
.130 | 700
.177 | 800
.231 | 900
.293 | |-------------------------|-------------------|--------------------------|------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------| | | RETURN
FACTORS | —SP=2.6 TP
NC + 8 | CFM
NC | 915
14 | 1225
22 | 1530
28 | 1835
32 | 2140
37 | 2450
40 | 2750
43 | | | | | | A B | A B | A B | A B | A B | A B | A B | | 21 | | (♣ 4A | CFM/SIDE
THROW, FT. | 230
18-21-30 | 306
19-25-34 | 382
21-28-39 | 460
23-30-41 | 535
25-32-44 | 612
26-34-46 | 688
28-39-51 | | 21 | | ₽ _A 3A | CFM/SIDE
THROW, FT. | 230 345
15-19-26 20-25-34 | 306 460
17-22-29 23-28-39 | 382 573
19-25-34 26-31-45 | 460 688
20-26-36 28-34-50 | 535 802
22-28-39 29-36-53 | 612 918
23-29-40 34-39-56 | 688 1030
25-34-45 34-43-59 | | 3.06 | 2S | 2G | CFM/SIDE
THROW, FT. | 458
22-27-39 | 612
25-31-45 | 765
28-35-50 | 917
31-39-55 | 1070
32-42-59 | 1225
35-45-62 | 1375
39-48-66 | | SQ. FT. | | ∭) A 1S | CFM/SIDE
THROW, FT. | 917
29-37-51 | 1225
34-43-59 | 1530
39-50-67 | 1835
43-53-71 | 2140
46-56-77 | 2450
50-60-82 | 2750
53-64-88 | | | RETURN
FACTORS | —SP=2.7 TP
NC + 8 | CFM
NC | 1200
15 | 1600
23 | 2000
29 | 2400
33 | 2800
37 | 3200
41 | 3600
44 | | | | | | A B | A B | A B | A B | A B | A B | A B | | 24 | | (□) 4A | CFM/SIDE
THROW, FT. | 300
20-24-33 | 400
24-27-40 | 500
27-31-44 | 600
29-33-47 | 700
31-35-51 | 800
33-40-55 |
900
35-40-58 | | 24 | | ₽ _A 3A | CFM/SIDE
THROW, FT. | 300 450
20-24-33 23-28-39 | 400 600
24-27-40 26-31-46 | 500 750
27-31-44 29-36-52 | 600 900
29-33-47 31-38-56 | 700 1050
31-33-51 36-41-59 | 800 1200
33-40-55 36-43-64 | 900 1350
35-40-58 39-47-67 | | 4.0 | 2S | 2G | CFM/SIDE
THROW, FT. | 600
25-33-45 | 800
30-36-51 | 1000
34-42-58 | 1200
36-45-61 | 1400
39-48-66 | 1600
43-52-70 | 1800
46-55-75 | | SQ. FT. | | 1S | CFM/SIDE
THROW, FT. | 1200
35-40-59 | 1600
38-48-67 | 2000
45-54-77 | 2400
48-58-82 | 2800
51-62-90 | 3200
54-67-93 | 3600
59-70-101 | | | RETURN
Factors | —SP=3.1 TP
NC + 8 | CFM
NC | 1875
16 | 2500
24 | 3125
30 | 3750
35 | 4375
39 | 5000
42 | 5625
46 | | | | | | A B | A B | A B | A B | A B | A B | A B | | 30 | | (♠) 4A | CFM/SIDE
THROW, FT. | 469
25-31-42 | 625
29-36-48 | 782
34-40-55 | 937
36-44-61 | 1093
38-46-65 | 1250
40-50-69 | 1406
46-52-73 | | 30 | | ₽ A 3A | CFM/SIDE
THROW, FT. | 469 703
25-31-42 28-34-49 | 625 938
29-36-48 32-39-57 | 782 1172
34-40-55 35-44-64 | 937 1405
36-44-61 39-49-69 | 1093 1640
38-46-65 41-49-74 | 1250 1875
40-50-69 44-57-78 | 1406 2110
46-52-73 49-60-83 | | 6.25 | 2S | 2G | CFM/SIDE
THROW, FT. | 937
32-40-55 | 1250
37-47-63 | 1562
42-53-72 | 1875
47-57-77 | 2187
50-60-83 | 2500
53-65-88 | 2812
57-68-95 | | SQ. FT. | | ∭) A 1S | CFM/SIDE
THROW, FT. | 1875
42-53-72 | 2500
49-60-83 | 3125
56-69-93 | 3750
60-72-102 | 4375
63-77-109 | 5000
69-83-116 | 5625
72-88-123 | | | RETURN
FACTORS | —SP=3.6 TP
NC + 9 | CFM
NC | 2700
18 | 3600
25 | 4500
31 | 5400
36 | 6300
40 | 7200
44 | 8100
48 | | | | | | A B | A B | A B | A B | A B | A B | A B | | 36 | | (□) ^{4A} | CFM/SIDE
THROW, FT. | 675
30-37-51 | 900
34-41-57 | 1125
39-46-67 | 1350
41-51-74 | 1575
44-53-78 | 1800
51-57-83 | 2025
51-64-87 | | 36 | | ₽ _A 3A | CFM/SIDE
THROW, FT. | 675 1010
30-37-51 34-44-60 | 900 1350
34-41-57 40-48-68 | 1125 1687
39-46-67 46-56-78 | 1350 2025
41-51-74 48-60-82 | 1575 2362
44-53-78 52-64-88 | 1800 2700
51-57-83 58-70-94 | 2025 3038
51-64-87 62-74-100 | | 9.0 | 2S | 2G | CFM/SIDE
THROW, FT. | 1350
40-45-67 | 1800
43-54-76 | 2250
50-61-86 | 2700
54-65-92 | 3150
58-70-101 | 3600
61-76-104 | 4050
67-79-113 | | SQ. FT. | |) A 1S | CFM/SIDE
THROW, FT. | 2700
49-61-85 | 3600
59-70-99 | 4500
66-80-114 | 5400
72-85-122 | 6300
76-91-131 | 7200
82-97-142 | 8100
87-106-150 | For performance notes, see page D37. ## **MODELS 6500 AND 6200 • RECTANGULAR NECK** | NOMINAL
NECK
SIZE | | BLOW
TTERNS | | NECK
VELOCITY
TP | | 00
133 | | 100
158 | | 00
90 | 60
.13 | | | 00
177 | 80
.23 | | 90
.29 | | |-------------------------|----------------------------|----------------|---------------|------------------------|------------------|-----------------|------------------|--------------------|-------------------|------------------|-------------------|------------------|-------------------|--------------------|-------------------|------------------|-------------------|------------------| | | RETURN
Factors | —SP=
NC | 3.3 TP
+ 8 | CFM
NC | | 300
18 | | 400
25 | 30
3 | 00
1 | 36
3 | | | 200
40 | 48
4 | | 541
41 | | | | | | | | A | В | Α | В | A | В | Α | В | Α | В | A | В | A | В | | | (■ 4B | () A | 4C | CFM/SIDE
THROW, FT. | 600
29-37-51 | 300
19-22-31 | 800
34-41-58 | 400
3 22-25-37 | 1000
39-48-66 | 500
25-29-41 | 1200
41-51-70 | 600
27-31-44 | 1400
44-54-75 | 700
5 29-32-48 | 1600
49-59-80 | 800
31-37-51 | 1800
53-63-85 | 900
32-37-54 | | | • | A (| 4E | CFM/SIDE
THROW, FT. | 450
25-31-42 | 450
24-31-42 | 600
29-37-5 | 600
I 29-37-51 | 750
32-41-58 | 750
32-41-58 | 900
35-44-61 | 900
35-44-61 | 1050
37-48-66 | 1050
37-48-66 | 1200
41-51-71 | 1200
41-51-71 | 1350
42-54-75 | 1350
42-54-75 | | 36
x | | B | 3A1 | CFM/SIDE
THROW, FT. | 750
31-37-54 | 300
19-22-31 | 1000
37-42-6 | 400
I 22-25-37 | 1250
41-49-70 | 500
25-29-41 | 1500
44-54-75 | 600
27-31-44 | 1750
48-58-80 | 700
) 29-32-48 | 2000
51-61-85 | 800
31-37-51 | 2250
54-65-90 | 900
32-37-54 | | 24 | | В | 3A2 | CFM/SIDE
THROW, FT. | 676
27-32-48 | 562
24-29-41 | 900
34-37-5 | 750
1 27-32-48 | 1125
34-42-61 | 937
31-37-54 | 1350
37-48-66 | 1125
32-39-58 | 1575
39-51-71 | 1312
35-42-61 | 1800
42-54-75 | 1500
37-44-66 | 2025
48-58-80 | 1687
41-49-70 | | 6.0
SQ. FT. | | A (A | 2A
2B | CFM/SIDE
THROW, FT. | 900
32-41-56 | i | 1200
37-48-6 | 5 | 1500
42-54-73 | | 1800
48-58-78 | | 2100
51-61-85 | i | 2400
54-66-90 | | 2700
58-70-97 | | | | B P 2C 2E | В | 2D
2F | CFM/SIDE
THROW, FT. | 1200
37-42-63 | 600
25-31-42 | 1600
41-51-7 | 800
I 29-37-51 | 2000
48-58-82 | 1000
32-41-58 | 2400
51-61-87 | 1200
35-44-61 | 2800
54-66-95 | 1400
5 37-48-66 | 3200
58-71-99 | 1600
41-51-71 | 3600
63-75-107 | 1800
42-54-75 | | | | | 1A
1B | CFM/SIDE
THROW, FT. | 1800
41-51-70 | ı | 2400
48-58-80 |) | 3000
54-66-90 | | 3600
58-70-99 | | 4200
61-75-105 | 5 | 4800
66-80-114 | | 5400
70-85-122 | ! | | | RETURN
Factors | —SP=
NC | 3.4 TP
+ 8 | CFM
NC | | 250
19 | | 000
26 | | 50
2 | 45
3 | | | 250
41 | 60
4 | | 679
47 | | | | | | | | A | В | Α | В | Α | В | Α | В | Α | В | Α | В | A | В | | | 1 1 1 1 1 1 1 1 1 1 | (1) A | 4C | CFM/SIDE
THROW, FT. | 657
29-37-51 | 468
20-25-34 | 875
34-41-58 | 625
3 24-29-39 | 1093
39-48-66 | 782
27-32-44 | 1313
41-51-70 | 937
29-37-49 | 1532
44-54-75 | 1093
5 31-37-53 | 1750
49-59-80 | 1250
32-41-56 | 1969
53-63-85 | 1406
37-42-59 | | 36 | | В | 3A1 | CFM/SIDE
THROW, FT. | 890
32-41-56 | 468
20-25-34 | 1187
37-48-6 | 625
5 24-29-39 | 1484
42-54-73 | 782
27-32-44 | 1781
48-58-78 | 937
29-37-49 | 2078
51-61-85 | 1093
5 31-37-53 | 2375
54-66-90 | 1250
32-41-56 | 2672
58-70-97 | 1406
37-42-59 | | 30 | | В | 3A2 | CFM/SIDE
THROW, FT. | 787
31-37-54 | 675
22-27-37 | 1050
37-42-6 | 900
I 25-31-42 | 1312
41-49-70 | 1125
29-34-49 | 1575
44-54-75 | 1350
31-37-54 | 1837
48-58-80 | 1575
) 32-39-58 | 2100
51-61-85 | 1800
37-42-61 | 2362
54-65-90 | 2025
37-48-65 | | 7.5 | | A (A | 2A
2B | CFM/SIDE
THROW, FT. | 1125
34-42-59 | | 1500
39-49-68 | 3 | 1875
44-56-76 | | 2250
49-59-83 | | 2625
53-65-88 | 3 | 3000
56-68-97 | | 3375
59-73-102 | 2 | | SQ. FT. | B 2C 2E | A) B | 2D
2F | CFM/SIDE
THROW, FT. | 1312
37-42-63 | 938
29-37-51 | 1750
41-51-7 | 1250
I 34-41-58 | 2188
48-58-82 | 1562
39-48-66 | 2625
51-61-87 | 1875
41-51-70 | 3063
54-66-95 | 2187
5 44-54-75 | 3500
58-71-99 | 2500
49-59-80 | 3938
63-75-107 | 2812
53-63-85 | | | | | 1A
1B | CFM/SIDE
THROW, FT. | 2250
48-60-82 | | 3000
56-68-9 | | 3750
64-78-106 | | 4500
68-82-116 | | 5250
72-88-12 | 4 | 6000
78-94-134 | | 6750
82-100-14 | 1 | ## Notes: - 1. Core style 4E is sized to give equal flow as near as possible in directions A and B. - 2. For core styles 1A, 1B, 2A and 2B, the "A" direction is shown. Throw correction factor for "B" direction is: A x .82 = B. CFM - cubic feet per minute **TP** - total pressure - inches w.g. T - throw in feet NC - Noise Criteria (values) based on 10 dB room absorption, re 10⁻¹² watts. Neck Velocity - feet per minute ## **Performance Notes:** - 1. Throw values are given for terminal velocities of 150, 100 and 50 fpm under isothermal conditions. Data applies to ceiling mounted units when the maximum coanda effect applies. When no ceiling is present (exposed duct), throws are reduced by approximately 25%. - 2. Sound levels in performance tables are for steel construction **Model 6500**. Apply the following corrections for aluminum construction **Model 6200**. TP = Listed value x 1.25. NC = Listed value + 4. - 3. Performance data as tabulated is for supply air conditions. Correction factors for return air application see next page. - 4. Correction factors for adjustable models see next page. - 5. Correction factors for round inlets see next page. - 6. Data derived from tests conducted in accordance with ANSI/ASHRAE Standard 70 2006. ## PERFORMANCE DATA CORRECTIONS: ## **MODELS 6500 AND 6200** ## **CORRECTION FACTORS FOR RETURN INLET** If the unit is used as a return inlet, the performance data is obtained by applying the return corrections, as follows: - Add the NC correction at the left side of the table to the NC value listed in the performance table. - Multiply the listed SP factor at the left side of the table by the total pressure (TP) listed at the top of the table. ## CORRECTION FACTORS FOR MODELS 6550 AND 6250 (ADJUSTABLE PATTERN CONTROLLERS) – TABLE 2 Refer to the performance data for the **Models 6500** and **6200**. Apply the corrections from Table 2 to the data for square, 4-way core styles, as follows: - NC = listed + correction - Total Pressure = listed x factor - Horizontal Throw = listed - Vertical Throw = listed x factor Apply the throw factor to the 50 fpm terminal velocity throw only. ## Example: 18" x 18", **Model 6500**, 1350 cfm, 20°F temperature difference heating, vertical projection, (Page D23). - NC = 31 + 6 = 37 - TP = .13 x 2.1 = .273 - Throw = $36 \times 9 = 32.4$ feet @ 50 fpm terminal velocity. ## CORRECTION FACTORS WITH SQUARE TO ROUND INLET ADAPTOR – TABLE 3 - Add the NC correction factor from Table 3 and the NC value listed in the performance
tables. - Multiply the correction factor from Table 3 by the listed total pressure in the performance tables. - Multiply the correction factor from Table 3 by the listed throws in the performance tables. #### **Example:** $12" \times 12"$ unit with 10" round adaptor handling 500 cfm supply air. (Page D23). - NC = 23 + 7 = 30 - Total Pressure = .09 x 1.65 = 0.149 - Throw = $21 \times 1.15 = 24.15$ feet @ 50 fpm terminal velocity. ## **Example:** 12" x 12" unit handling 600 cfm of return air. (Page D23). - Return NC = 28 + 4 = 32. - Return negative SP = $1.3 \times (-.13) = -.169$. TABLE 2 Correction Factors 6550/6250 Adjustable | | NC | | тот | ΓAL | VERTICAL THROW (multiply) | | | | | | | | |--------------|----|-----|-----|----------------|---------------------------------|-------------|------|------|--|--|--|--| | NECK
SIZE | | id) | | SURE
tiply) | COOLING,
_{\Delta T} | HEATING, ∆T | | | | | | | | | Н | ٧ | Н | V | 20°F | 0°F | 20°F | 40°F | | | | | | 6 x 6 | 2 | 6 | 1.2 | 1.5 | 1.3 | 1.1 | 0.8 | 0.6 | | | | | | 9 x 9 | 2 | 6 | 1.4 | 2.1 | 1.5 | 1.2 | 0.9 | 0.6 | | | | | | 12 x 12 | 2 | 6 | 1.4 | 2.1 | 1.6 | 1.3 | 1.0 | 0.6 | | | | | | 15 x 15 | 2 | 6 | 1.4 | 2.1 | 1.7 | 1.3 | 1.0 | 0.6 | | | | | | 18 x 18 | 2 | 6 | 1.4 | 2.1 | 1.7 | 1.3 | 0.9 | 0.6 | | | | | | 21 x 21 | 2 | 6 | 1.4 | 2.1 | 1.7 | 1.3 | 0.8 | 0.5 | | | | | | 24 x 24 | 2 | 6 | 1.6 | 2.2 | 1.5 | 1.1 | 0.7 | 0.3 | | | | | **TABLE 3 Correction Factors for SR Adaptors** | SQUARE | ROUND | NC | TP | THRO |)W (mu | ltiply) | |---------|-------|-------|------------|------|--------|---------| | INLET | INLET | (add) | (multiply) | 150 | 100 | 50 | | 6 x 6 | 5 | 7 | 1.65 | 1.10 | 1.10 | 1.15 | | 9 x 9 | 6 | 17 | 3.50 | 1.15 | 1.15 | 1.20 | | 9 x 9 | 8 | 4 | 1.40 | 1.10 | 1.10 | 1.10 | | 12 x 12 | 8 | 17 | 3.50 | 1.15 | 1.15 | 1.20 | | 12 x 12 | 10 | 7 | 1.65 | 1.10 | 1.10 | 1.15 | | 15 x 15 | 10 | 17 | 3.50 | 1.15 | 1.15 | 1.20 | | 15 x 15 | 12 | 9 | 1.90 | 1.10 | 1.10 | 1.15 | | 15 x 15 | 14 | 3 | 1.25 | 1.05 | 1.05 | 1.10 | | 18 x 18 | 12 | 17 | 3.50 | 1.15 | 1.15 | 1.20 | | 18 x 18 | 14 | 10 | 2.00 | 1.10 | 1.10 | 1.15 | | 18 x 18 | 16 | 5 | 1.45 | 1.10 | 1.10 | 1.10 | | 21 x 21 | 14 | 17 | 3.70 | 1.15 | 1.15 | 1.20 | | 21 x 21 | 16 | 11 | 2.25 | 1.10 | 1.10 | 1.15 | | 21 x 21 | 18 | 6 | 1.60 | 1.10 | 1.10 | 1.10 | | 21 x 21 | 20 | 3 | 1.20 | 1.05 | 1.05 | 1.10 | | 24 x 24 | 16 | 17 | 3.50 | 1.15 | 1.15 | 1.20 | | 24 x 24 | 18 | 12 | 2.35 | 1.10 | 1.10 | 1.15 | | 24 x 24 | 20 | 7 | 1.65 | 1.10 | 1.10 | 1.15 | | 24 x 24 | 22 | 4 | 1.33 | 1.05 | 1.05 | 1.10 | # INSTALLATION INSTRUCTIONS FOR CEILING RADIATION DAMPERS STEEL DUCT SUPPORT APPLICATIONS **MODEL SERIES: 0700** #### QUALIFICATIONS: - UL 555C Classified Ceiling Damper (File #9660). - CAN4-S112.2 Ceiling Firestop Flap Assemblies. - California State Fire Marshal: Fire Damper Listing No. 3225-0935:102. - City of New York Board of Standards and Appeals. Cal. No. 460-88-SA. - Meets the requirements for NFPA 90A, IBC and NBC (Canada) and associated local building codes. ## **NOTES:** - 1. Model Series 0700 Ceiling Dampers (known as Fire Stop Flaps in Canada) are for use in place of the hinged blade, sheet metal damper in steel ducts with steel diffuser or grille as specified in the "Design Information Section General" and in the individual floor or roof ceiling design(s) being used, as illustrated and described in the current UL Fire Resistance Directory. One ceiling damper of the same size as the allowable duct outlet size may be substituted for each hinged sheet metal damper specified in the design. - The clearance between each side of the ceiling damper and the duct drop shall be 1/8" (3) maximum. - 2. Opening in ceiling membrane may be up to 1" (25) larger than the nominal size of the ceiling radiation damper. For exposed grid T-Bar ceiling systems, where the opening in the ceiling membrane is larger (more than 1" (25)) than the ceiling damper, a thermal blanket (Model 0725 or 0726) must be installed over the exposed surface of the diffuser (see lay-in diffuser applications). - Duct outlets in lay-in ceilings should be located within the field of an acoustical ceiling panel or tile. - Where it is necessary to cut a main runner or cross tee, each cut end shall be supported by a vertical No. 12 SWG hanger wire. A 1/2" (13) clearance shall be maintained between the duct outlet and each cut end at main runner and cross tee. The duct outlet shall be located so that no more than one main runner or cross tee is cut when penetrating the ceiling membrane. - 3. A. Before installing Model 0716 or 0722, open blades and install fusible link between spring loaded wire clips. Do not bend or deform clips after assembly. If dampers are provided with link tabs instead of wire clips, install link and bend tabs to secure link in position. - B. After installing damper model 0714 in duct drop, open blade and attach link to duct or duct drop. ## 4. INSTALLATION: **Method 1.** Type 0714, 0716 and 0720 Attach the two 16 ga. (1.6) steel support channels. (1 1/2" (38) deep with 1/2" (13) flanges), through the duct drop and ceiling damper using 3/16" (5) diameter by 1/2" (13) long steel bolts spaced 6" (152) o.c. maximum, with two bolts per channel minimum. The bolts shall not interfere with the closing of the ceiling damper. Method 2. Type 0714, 0716, 0720 and 0722 Support the duct with two 16 ga. (1.6) steel support channels (1 1/2" (38) deep with 1/2" (13) flanges). Place the support channels at the bottom of the duct adjacent to both sides of the duct drop. Install the ceiling damper in the duct drop using 3/16" (5) diameter by 1/2" (13) long steel bolts, #8 by 1/2" (13) sheet metal screws or 3/16" (5) diameter steel rivets at 6" (152) o.c. with 2 per side minimum for rectangular or square dampers. For round dampers, use three equally spaced #8 x 1/2" (13) sheet metal screws for dampers up to 10" (254) dia. and four for larger sizes. - 5. Use No. 12 SWG galvanized steel wire hangers to independently support channels to the structural members of the floor or roof above. - Maximum damper size. Models 0714, 0716, 0716-4 and 0716-4A: 24" x 24" (610 x 610). Model 0716A: 16" x 16" (406 x 406). Model 0720: 18" x 18" (457 x 457). Model 0710A. 10 X 10 (400 X 400). Model 0720. 10 X 10 (437 X Model 0722: 24" (610) dia. Model 0722A: 16" (406) dia.. 7. **Steel grille or diffuser installation:** Attach to the duct drop or ceiling damper using #8 by 1/2" (13) long sheet metal screws at 8" (203) o.c. maximum and at least one screw per side for rectangular or square dampers. Round neck grilles or diffusers shall be attached to the duct drop or ceiling damper using a minimum of four equally spaced #8 x 1/2" (13) sheet metal screws. The grille or diffuser flange face shall overlap the ceiling opening by 1" (25) minimum and provide structural support for the ceiling membrane. Non-steel grille or diffuser installation: Duct drop requires a support flange as detailed on page 2. Grille or diffuser may be attached in any suitable manner. Page 1 of 2 Dimensions are in inches (mm). #### TYPICAL GRILLE/DIFFUSER APPLICATIONS ## STEEL GRILLE OR DIFFUSER DETAIL ### NON-STEEL GRILLE OR DIFFUSER DETAIL ## ITEMS: - 1. Wire hangers (4 required). - 2. Main duct. - Listed fusible link or alt. listed adj. fusible link assembly. (Blade control through screw adjustment). - 4a. Steel duct drop. - 4b. Steel duct drop with 1" (25) lower support flange. The support flange may be integral to the duct drop or 1" x 1" (25 x 25) angles may be fastened to the duct drop at 4" (102) max. on center, min. two per side. Dimensions are in inches (mm). - 5. Support channels (2 required). - Mounting bolts, screws or rivets. - Ceiling: Acoustical panel (lay-in), acoustical tile or gypsum wallboard. - Grille or diffuser (see note 7). - Supplementary thermal blanket for use where ceiling opening is larger than nominal damper size. (See lay-in diffuser applications). Page 2 of 2 Houston, Texas Tel: 281-590-1172 Fax: 281-590-3086 Las Vegas, Nevada Tel: 702-648-5400 Fax: 702-638-0400 Toronto, Canada Tel: 416-744-3300 Fax: 416-744-3360 Calgary, Canada Tel: 403-279-8619 Fax: 403-279-5035 Page 5.051 9/09 IOM-CRDSDINST # SUPPLEMENTARY INSTALLATION INSTRUCTIONS CEILING RADIATION DAMPERS WITH THERMAL BLANKET • LAY-IN DIFFUSER APPLICATIONS **MODEL SERIES: 0700** ## CEILING DAMPER, DIFFUSER AND THERMAL BLANKET ASSEMBLY FOR LAY-IN INSTALLATION WITH FLEXIBLE OR STEEL DUCT #### **QUALIFICATIONS:** - UL 555C Classified Ceiling Damper. (File # 9660). - CAN4-S112.2 Ceiling Firestop Flap Assemblies. - California State Fire Marshal: Fire Damper Listing No. 3225-0935:102. - · City of New York Board of Standards and Appeals. Cal. No. 460-88-SA. - Meets the requirements for NFPA 90A, IBC, BOCA, SBCCI, UBC, NBC (Canada) and associated local building codes. ## **NOTES:** - 1. Follow carefully the installation procedure shown on page 2 for flexible duct and page 3 for hard duct. - 2. Before installing, open damper blades and install link between spring loaded wire clips. Do not bend or deform clips after assembly. If dampers are provided with link tabs instead of wire clips, install link and bend tabs to secure link in position. - 3. The end tabs of the 2'-0" (610) cross T-Bar shall be bent back against the web of the 4'-0" (1219) cross T-Bars. The 4'-0" (1219) cross T-Bars must have slots in the web for connection of the 2'-0" (610) cross T-Bar. - 4. Use No. 12 SWG galvanized steel hanger wires to independently support the ceiling T-Bars to the structural members of the floor or roof above. Ensure hanger wires are plumb and straight. - 5. Maximum distance from face of ceiling to face of damper blade is 4" (102). - 6. Maximum size of the Ceiling Damper/Ceiling Air Diffuser neck is 12" x 12" (305 x 305) for square hard duct and 14" (356) dia. for flexible duct installations. Larger neck sizes require the duct to be independently supported. See IOM pages 5.050-5.051. The Flexible Duct
shall be Class 0 or 1 bearing the UL Classification marking. The maximum length of the duct shall not exceed 14'-0" (4267) in length. No portion of the duct shall rest on the back surface of the ceiling panels or tiles and a minimum of 4" (102) clearance must be maintained. Where the duct must be supported, use straps or No. 12 SWG steel hanger wires 4'-0" (1219) to 6'-0" (1829) o.c. - Caution should be observed so that the duct does not interfere with the operation of the Classified Ceiling Damper of the Ceiling Air Diffuser assembly. - 8. No Diffuser shall be located in an adjacent 24" x 48" (610 x 1219) ceiling grid module. - 9. Ceiling Damper/Ceiling Air Diffuser assemblies are for use in lieu of the hinged blade, sheet metal damper in steel ducts as specified in the "Design Information Section General", and in the individual floor and roof ceiling design(s) being used, as illustrated and described in the current UL "Fire Resistance Directory". Page 1 of 4 Dimensions are in inches (mm). Slip ceiling damper over neck of diffuser and install screws (item 5) on equally spaced centers. MODELS: 0722 & 0722A. CEILING DAMPER, DIFFUSER AND THERMAL BLANKET ASSEMBLY Place thermal blanket over ceiling damper and diffuser neck and set square with ceiling grid. Cut corners of blanket to clear hanger wires (item 10). ## ITEMS: - 1. Lay-in type steel diffuser with round neck or square-to-round adapter. (24 gauge minimum). - 2. Ceiling damper. - 2a. Ceiling damper with top extension. - 3. Thermal blanket. (Model 0725). - 4. UL Listed flexible duct. - 5. #8 x 1/2" (13) sheet metal screws; equally spaced. Three required for 10" (254) dia. or less. Four required for 12" (305) and 14" (356) dia. - 6. Main T-bar runner. - 7. 4'-0" (1219) cross T-bar. - 8. 2'-0" (610) T-bar. - 9. 1'-0" (305) T-bar. - 10. The 4 corners of the grid module in which the lay-in diffuser is installed shall have a hanger wire support. - 11. Ceiling panel or tile set in ceiling grid. Combined diagram of typical ceiling grid layouts to suit 12" x 12" (305 x 305), 24" x 12" (610 x 305) or 24" x 24" (610 x 610) diffuser sizes as noted. No diffusers shall be located in adjacent modules. Refer to notes on page 5.060. ## THERMAL BLANKET **ATTACHMENT:** Replace neck flaps of thermal blanket over duct and fasten duct to neck over blanket using 18 SWG min. steel wire or steel clamp in accordance with duct manufacturer's installation instructions. Do not use bolts, screws or rivets. Dimensions are in inches (mm). Page 2 of 4 CEILING DAMPER, DIFFUSER AND THERMAL BLANKET ASSEMBLY FOR LAY-IN INSTALLATION WITH RECTANGULAR STEEL DUCT. MODELS: 0714, 0716, 07164, 0716-4, 0716-4A & 0720. Slip ceiling damper over neck of diffuser and install screws (item 5) on equally spaced centers. Place thermal blanket over ceiling damper and diffuser neck and set square with ceiling grid. Cut corners of blanket to clear hanger wires (item 10). ## ITEMS: - 1. Lay-in type steel diffuser with square or rectangular neck. (24 gauge min.). - 2. Ceiling damper. - 3. Thermal blanket. (Model 0726). - 4. Steel duct drop. - #8 x 1/2" (13) sheet metal screws; equally spaced at 8" (203) o.c. maximum with at least one screw per side. - 6. Main T-bar runner. - 7. 4'-0" (1219) cross T-bar. - 8. 2'-0" (610) T-bar. - 9. 1'-0" (305) T-bar. - The 4 corners of the grid module in which the lay-in diffuser is installed shall have a hanger wire support. - 11. Ceiling panel or tile set in ceiling grid. Combined diagram of typical ceiling grid layouts to suit 12" x 12" (305 x 305), 24" x 12" (610 x 305) or 24" x 24" (610 x 610) diffuser sizes as noted. No diffusers shall be located in adjacent modules. Refer to notes on page 5.060. ## THERMAL BLANKET ATTACHMENT: Replace neck flaps of thermal blanket over duct and fasten using 18 SWG steel wire. Page 3 of 4 Dimensions are in inches (mm). Houston, Texas Tel: 281-590-1172 Fax: 281-590-3086 **Las Vegas, Nevada** Tel: 702-648-5400 Fax: 702-638-0400 **Toronto, Canada** Tel: 416-744-3300 Fax: 416-744-3360 **Calgary, Canada** Tel: 403-279-8619 Fax: 403-279-5035