INSTALLATION AND OPERATION MANUAL
CROSS-FLOW SENSOR K-FACTORS
FOR VAV TERMINAL UNITS

Nailor Industries Inc. reserves the right to change any information concerning product or specification without notice or obligation.

Model Series:
3000 Single Duct
3210 Dual Duct
35S-OAI Series Fan Powered w/ O.A. Damper
38S Underfloor Fan Powered

Model Series:
3100 Single Duct
3230 Dual Duct
3240 "Blendmaster" Dual Duct
33SZ Chilled Water Fan Powered
35N Parallel Fan Powered
35S Series Fan Powered
35S-CVP Pressurization Series Fan Powered
35SSST Stealth Series Fan Powered
35SXC Stealth XC Series Fan Powered
36VRR Round Retrofit

Model Series:
37N Low Profile Parallel Fan Powered
37S Low Profile Fan Powered
37SSST Low Profile Stealth Fan Powered
37SXC LowProfile Stealth XC Series Fan Powered

Equations:
\[Q = K \times \sqrt{\Delta P} \]
\[\Delta P = \left(\frac{Q}{K} \right)^2 \]
\[F = \left(\frac{4005 \times A}{K} \right)^2 \]

Where:
- \(Q \) = Airflow Rate (cfm)
- \(\Delta P \) = Sensor Differential Pressure ("w.g.)
- \(K \) = K-Factor Calibration Constant (standard air)
- \(F \) = Amplification Factor (sensor gain)
- \(A \) = Nom. Duct Area (sq. ft.)

The K-Factors tabulated in the above tables are the airflow required to produce a 1.0" w.g. differential pressure at the Cross-Flow Sensor.
Model Series:
30HQX Single Duct Exhaust (Hospital Grade)
30X Single Duct Exhaust

<table>
<thead>
<tr>
<th>Inlet Size</th>
<th>Type</th>
<th>Value Inlet Size (inches)</th>
<th>Valve Inlet Area (sq. ft.)</th>
<th>K-Factor (cfm)</th>
<th>Velocity (fpm)</th>
<th>F-Factor (amp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>3.4 x 3.4</td>
<td>0.080</td>
<td>197</td>
<td>2468</td>
<td>2.98</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>4.3 x 4.3</td>
<td>0.128</td>
<td>316</td>
<td>2468</td>
<td>2.81</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5.5 x 5.5</td>
<td>0.210</td>
<td>527</td>
<td>2509</td>
<td>2.24</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>5.8 x 6.3</td>
<td>0.254</td>
<td>637</td>
<td>2509</td>
<td>2.24</td>
</tr>
<tr>
<td>8</td>
<td>SQUARE OR RECT.</td>
<td>6.7 x 7.2</td>
<td>0.335</td>
<td>933</td>
<td>2786</td>
<td>2.01</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>8.6 x 7.1</td>
<td>0.424</td>
<td>1175</td>
<td>2727</td>
<td>2.05</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>9.5 x 8.0</td>
<td>0.528</td>
<td>1542</td>
<td>2920</td>
<td>1.92</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>13.6 x 8.1</td>
<td>0.765</td>
<td>2234</td>
<td>2920</td>
<td>1.77</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>12.9 x 10.8</td>
<td>0.968</td>
<td>2869</td>
<td>2964</td>
<td>2.03</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>18.3 x 10.8</td>
<td>1.373</td>
<td>3928</td>
<td>2861</td>
<td>2.14</td>
</tr>
<tr>
<td>24 x 16</td>
<td></td>
<td>26.1 x 16.3</td>
<td>2.954</td>
<td>8709</td>
<td>2948</td>
<td>1.89</td>
</tr>
</tbody>
</table>

Equations:
\[Q = K \times \sqrt{\Delta P} \]
\[\Delta P = \left(\frac{Q}{K} \right)^2 \]
\[F = \left(\frac{4005 \times A}{K} \right)^2 \]

Where:
- \(Q \) = Airflow Rate (cfm)
- \(\Delta P \) = Sensor Differential Pressure ("w.g.")
- \(K \) = K-Factor Calibration Constant (standard air)
- \(F \) = Amplification Factor (sensor gain)
- \(A \) = Nom. Duct Area (sq. ft.)

The K-Factors tabulated in the above tables are the airflow required to produce a 1.0" w.g. differential pressure at the Cross-Flow Sensor.